727 research outputs found

    In vitro 2-deoxy-2-[18F]fluoro-D-glucose uptake: practical considerations

    Get PDF
    In oncology 2-deoxy-2-[F-18]fluoro-D-glucose ([F-18]-FDG), a glucose analogue, is the most used positron emission tomography (PET) tracer. There are however some limitations due to low metabolic activity or high surrounding physiological uptake in several tumors or regions. Investigating new tracers or methods is expensive and elaborative when animal experiments or phase I clinical trials are used. In vitro experiments can overcome these limitations. We analyzed the influence of incubation time, cell medium conditions, administered activity, and cell density on [F-18]-FDG uptake in six different cell cultures. Glucose transporter 1 (GLUT1)- and hexokinase 2 (HK2)-expression at high and low cell density was analyzed using immunocytochemistry. FDG-uptake increases over time and absence of glucose in the incubation medium increases uptake. By increasing the administered activity, uptake per protein also increases and tracer uptake per protein is lower at higher cell densities. Immunocytochemical analysis reveals a lower expression of both GLUT1 and HK2 at higher cell concentrations. All investigated parameters influenced FDG uptake and therefore we can conclude it is of utmost importance to keep administered activity, incubation medium, and time constant and to correct uptake when cell density changes due to environmental conditions, such as therapy

    Scaling properties of work fluctuations after quenches at quantum transitions

    Full text link
    We study the scaling properties of the statistics of the work done on a generic many-body system at a quantum phase transition of any order and type, arising from quenches of a driving control parameter. For this purpose we exploit a dynamic finite-size scaling framework. Namely, we put forward the existence of a nontrivial finite-size scaling limit for the work distribution, defined as the large-size limit when appropriate scaling variables are kept fixed. The corresponding scaling behaviors are thoroughly verified by means of analytical and numerical calculations in two paradigmatic many-body systems as the quantum Ising model and the Bose-Hubbard model.Comment: 30 pages, 6 figures. Revised versio

    Comparative Study of Ageing, Heat Treatment and Accelerated Carbonation for Stabilization of Municipal Solid Waste Incineration Bottom Ash in View of Reducing Regulated Heavy Metal/metalloid Leaching

    Get PDF
    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20 to 27 wt.%) and Ca (16 to 19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH \u3e 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3–9.9); lower than ageing (10.5–12.2) and heat treatment (11.1–12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples

    Ultrasound-Intensified Mineral Carbonation

    Get PDF
    Several aspects of ultrasound-assisted mineral carbonation were investigated in this work. The objectives were to intensify the CO2 sequestration process to improve reaction kinetics and maximal conversion. Stainless steel slags, derived from the Argon Oxygen Decarburization (AOD) and Continuous Casting / Ladle Metallurgy (CC/LM) refining steps, were used for assessing the technical feasibility of this concept, as they are potential carbon sinks and can benefit from reduction in alkalinity (pH) by mineral carbonation. Ultrasound was applied by use of an ultrasound horn into the reaction slurry, where mineral carbonation reaction took place at 50 oC for up to four hours; comparison was made to solely mechanically mixed process. It was found that sonication increases the reaction rate after the initial stage, and permits achieving higher carbonate conversion and lower pH. AOD slag conversion increased from 30% to 49%, and pH decreased from 10.6 to 10.1; CC slag conversion increased from 61% to 73% and pH decreased from 10.8 to 9.9. The enhancement effect of ultrasound was attributed to the removal of passivating layers (precipitated calcium carbonate and depleted silica) that surround the unreacted particle core and inhibit mass transfer. Significant particle size reduction was observed for sonicated powders, compared to particle size growth in the case of stirring only; D[4,3] values increased without sonication by 74% and 50%, and decreased with sonication by 64% and 52%, respectively for AOD and CC slags. Considerations on scale-up of this technology, particularly with regards to energy efficiency, are also discussed

    Natural gamma-ray spectroscopy (NGS) as a proxy for the distribution of clay minerals and bitumen in the Cretaceous McMurray Formation, Alberta, Canada

    Get PDF
    Detailed examination of the mineralogy of the Cretaceous McMurray Formation within a facies framework is used to assess the use of natural gamma-ray spectroscopy (NGS) and a pulsed neutron generator (PNG) tool in delineating variation in clay mineral and bitumen contents. Characterization of the mixed-layer (interstratified) clay phases in the McMurray Formation provides an improved understanding of clay interaction in bitumen processing and tailings settling behavior, important for mine planning and tailings remediation schemes. Mineral diversity in the McMurray Formation was determined on facies attributed samples using whole rock X-ray diffraction (XRD), cation exchange capacity (CEC) measurements, elemental analysis (XRF), clay size fraction (<2 mu m) XRD analysis, reflected light microscopy, and cryogenic-scanning electron microscopy (cryo-SEM). Kaolinite was ubiquitous in the entire McMurray Formation with lower and middle McMurray Formation sediments also containing mixed-layered illite-smectite (I-S) with a low expandability approximate to 20-30%. Upper McMurray Formation sediments by contrast had higher expandability (approximate to 60-70%). In floodplain sediments of the lower McMurray Formation an additional clay mineral was quantified as a kaolinite-expandable mixed-layer (clay) mineral. The associated CEC values of this mineral are 10 times the baseline for the McMurray Formation. NGS spectra from cores showed that yields of potassium (K), uranium (U), and thorium (Th) had distinct facies associations, correlated with a clay mineral signature. The resultant indicator is capable of highlighting zones within an oil sands ore body that are empirically known, by industry, to process poorly through extraction plants. A bitumen indicator from the carbon yield derived from a PNG logging tool assesses bitumen content. NGS and PNG allow a full assessment of clay mineral (fines) and bitumen profiles, with the future prospect that these techniques could be used to assess ore and tailings behavior in near-real time

    Accelerated Mineral Carbonation of Stainless Steel Slags for CO2 Storage and Waste Valorization: Effect of Process Parameters on Geochemical Properties

    Get PDF
    This work explores the mineral carbonation of stainless steel slags in search for a technically and economically feasible treatment solution that steers these waste residues away from costly disposal in landfills and into valuable applications. Argon Oxygen Decarburization (AOD) and Continuous Casting (CC) slags prove ideal for mineral carbonation as their powdery morphology forgoes the need for milling and provides sufficient surface area for high reactivity towards direct aqueous carbonation. Experiments were undertaken using two methodologies: unpressurized thin-film carbonation, and pressurized slurry carbonation. The influence of process parameters (temperature, CO2 partial pressure, time, solids loading) on the slag carbonation conversion are investigated, seeking the optimal conditions that maximize the potential of the slags as carbon sinks. It was found that CC slag carbonates more extensively than AOD slag at essentially every processing condition due to differences in particle microstructure; still, it was possible to reach up to 0.26 and 0.31 g,CO2/g,slag uptake with AOD and CC slags, respectively, at optimal processing conditions via pressurized slurry carbonation. Mineral carbonation conversion was accompanied by significant reduction in basicity, as much as two pH units, and stabilization of heavy metals leaching, meeting regulatory limits (borderline for Cr) for safe waste materials re-use. Via quantitative mineralogical analyses, it was possible to differentiate the carbonation reactivity of several alkaline mineral phases, and to discern the preferential formation of certain Ca- and Mg-carbonates depending on the processing route and operating conditions. Slurry carbonation was found to deliver greater mineral carbonation conversion and optimal treatment homogeneity, which are required for commercial applications. However, thin-film carbonation may be a more feasible route for the utilization of slags solely as carbon sinks, particularly due to the elimination of several processing steps and reduction of energy demand

    Synthesis of Nanofiltration Membrane Developed from Triethanolamine (TEOA) and Trimesoyl Chloride (TMC) for Separation of Xylose from Glucose

    Get PDF
    Synthesis of thin film composite (TFC) nanofilt ration (NF) membrane has experienced tremendous development since the concept of interfacial polymerisation (IP) was first introduced. One of its new application is on the separation of xylose from glucos e in biomass hydrolysate. In this present study, NF TFC membrane has been produced through interfacial poly merisation by manipulation the concentration of triethanolamine (TEOA) at 35 min reaction time with 0. 15 % w/v of trimesoyl chloride (TMC). The membrane was then characterised in term of their chemical and physical properties, and separation performance between xylose and glucose. The growth of thin layer f ilm depends on concentration of TEOA as the monomer and reaction time. As concentration of TEOA and re action time increased, the layer of the TFC becomes thicker thus decreases the permeability of the membrane. Contradicted to this study, the lowest and the highest permeability were recorded at 4 % w/v of TEOA and 8 % w/v of TEOA at reaction time of 35-min in TMC. The TFC membrane prepared with 4 % w/v TEOA has high in permeate flux, resultant in high xylose separation of 1.3. Low permeate flux but moderate xylose separation factor of 0.93 was obtained for the TFC membrane prepared with 8 % w/v TEOA

    Listening effort and fatigue among cochlear implant users: a scoping review

    Get PDF
    IntroductionIn challenging listening situations, speech perception with a cochlear implant (CI) remains demanding and requires high levels of listening effort, which can lead to increased levels of listening-related fatigue. The body of literature on these topics increases as the number of CI users rises. This scoping review aims to provide an overview of the existing literature on listening effort, fatigue, and listening-related fatigue among CI users and the measurement techniques to evaluate them.MethodsThe Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statements were used to conduct the scoping review. The search was performed on PubMed, Scopus, and Web of Science to identify all relevant studies.ResultsIn total, 24 studies were included and suggests that CI users experience higher levels of listening effort when compared to normal hearing controls using scales, questionnaires and electroencephalogram measurements. However, executing dual-task paradigms did not reveal any difference in listening effort between both groups. Uncertainty exists regarding the difference in listening effort between unilateral, bilateral, and bimodal CI users with bilateral hearing loss due to ambiguous results. Only five studies were eligible for the research on fatigue and listening-related fatigue. Additionally, studies using objective measurement methods were lacking.DiscussionThis scoping review highlights the necessity for additional research on these topics. Moreover, there is a need for guidelines on how listening effort, fatigue, and listening-related fatigue should be measured to allow for study results that are comparable and support optimal rehabilitation strategies

    In Vitro

    Full text link

    Etiologies and hearing status in bilateral vestibulopathy: a retrospective study of 315 patients

    Get PDF
    ImportanceThe development of a vestibular implant has reached milestones and seems to be a promising therapeutic tool for bilateral vestibulopathy (BV). Given the former lack of therapeutic options for BV, the disease has received scant attention in the previous research literature. It is therefore of major importance to gain more insight into the underlying pathology of BV. Furthermore, as some research groups specifically use a combined vestibulo-cochlear implant, the size of the group of BV patients with associated hearing loss is of special interest.ObjectivesThe study aimed to determine the definite and probable etiology in bilateral vestibulopathy (BV) patients and to report on their hearing status.DesignThis study involves multicenter retrospective study design.SettingThe research setting is at tertiary referral centers.ParticipantsConsecutive BV patients diagnosed at the Antwerp University Hospital between 2004 and 2018 at the Maastricht University Medical Center between 2002 and 2015 and at the Geneva University Hospital between 2013 and 2018, who met the BV diagnostic criteria of the Bárány Society.Main outcome measuresPrimary interests were the etiology and hearing status of BV patients. Moreover, the data of vestibular tests were examined (caloric irrigation, rotatory chair tests, and video-head impulse test).ResultsThe authors identified 315 BV patients, of whom 56% were male patients. Mean age at diagnosis was 58.6 ± 15.1 (range 7–91) years. The definite cause was determined in 37% of the patients and the probable cause in 26% of the patients. No cause was identified in 37% of BV patients. The largest subgroup included patients with genetic etiology (31%), most frequently COCH mutation. Only 21% of patients (n = 61) had bilateral normal hearing. Almost half of the patients (45%, n = 134) had profound hearing loss in at least one ear.ConclusionBV is a heterogeneous condition, with over a third of cases remaining idiopathic, and nearly three-quarters affected by hearing loss. COCH mutation is the most common non-idiopathic cause of BV in our population. Only 21% of our BV patients presented with bilateral normal hearing
    • …
    corecore